Counting subgraphs in quasi-random 4-uniform hypergraphs

نویسندگان

  • Vojtech Rödl
  • Jozef Skokan
چکیده

A bipartite graph G = (V1 ∪ V2, E) is (δ, d)-regular if ̨̨ d− d(V ′ 1 , V ′ 2 ) ̨̨ < δ whenever V ′ i ⊂ Vi, |V ′ i | ≥ δ|Vi|, i = 1, 2.Here, d(V ′ 1 , V ′ 2 ) = e(V ′ 1 , V ′ 2 )/|V ′ 1 ||V ′ 2 | stands for the density of the pair (V ′ 1 , V ′ 2 ). An easy counting argument shows that if G = (V1 ∪ V2 ∪ V3, E) is a 3-partite graph whose restrictions on V1 ∪V2, V1 ∪V3, V2 ∪V3 are (δ, d)regular, then G contains (d ± f(δ))|V1||V2||V3| copies of K3. This fact and its various extensions are the key ingredients in most applications of Szemerédi’s Regularity Lemma. To derive a similar results for r-uniform hypergraphs, r > 2, is a harder problem. In 1994, Frankl and Rödl developed a regularity lemma and counting argument for 3-uniform hypergraphs. In this paper, we exploit their approach to develop a counting argument for 4-uniform hypergraphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The hypergraph regularity method and its applications.

Szemeredi's regularity lemma asserts that every graph can be decomposed into relatively few random-like subgraphs. This random-like behavior enables one to find and enumerate subgraphs of a given isomorphism type, yielding the so-called counting lemma for graphs. The combined application of these two lemmas is known as the regularity method for graphs and has proved useful in graph theory, comb...

متن کامل

Counting Small Cliques in 3-uniform Hypergraphs

Many applications of Szemerédi’s Regularity Lemma for graphs are based on the following counting result. If G is an s-partite graph with partition V (G) = ⋃s i=1 Vi, |Vi| = m for all i ∈ [s], and all pairs (Vi, Vj ), 1 i < j s, are -regular of density d, then G contains (1± f( ))d s 2 ms cliques Ks, provided < (d), where f( ) tends to 0 as tends to 0. Guided by the regularity lemma for 3-unifor...

متن کامل

On Spanning Structures in Random Hypergraphs

In this note we adapt a general result of Riordan [Spanning subgraphs of random graphs, Combinatorics, Probability & Computing 9 (2000), no. 2, 125–148] from random graphs to random r-uniform hypergaphs. We also discuss several spanning structures such as cube-hypergraphs, lattices, spheres and Hamilton cycles in hypergraphs.

متن کامل

Hereditarily Extended Properties, Quasi-Random Graphs and not Necessarily Induced Subgraphs

Recently nmch at tent ion has been focused on the theory of quasi-random graph and hypergraph properties. The class of quasi-random graphs is defined by certain equivalent graph properties possessed by random graphs. We shall investigate properties P which do not imply quasi-randomness for sequences (Gn) of graphs on their own, but do imply if they hold not only for the whole graph Gn but also ...

متن کامل

Isomorphic edge disjoint subgraphs of hypergraphs

We show that any k-uniform hypergraph with n edges contains two edge disjoint subgraphs of size Ω̃(n) for k = 4, 5 and 6. This is best possible up to a logarithmic factor due to an upper bound construction of Erdős, Pach, and Pyber who show there exist k-uniform hypergraphs with n edges and with no two edge disjoint isomorphic subgraphs with size larger than Õ(n). Furthermore, our result extends...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Random Struct. Algorithms

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2005